Source code for pytams.fmodel
"""A base class for the stochastic forward model."""
from abc import ABCMeta
from abc import abstractmethod
from logging import getLogger
from pathlib import Path
from typing import Any
from typing import final
_logger = getLogger(__name__)
[docs]
class ForwardModelBaseClass(metaclass=ABCMeta):
"""A base class for the stochastic forward model.
pyTAMS relies on a separation of the stochastic model,
encapsulating the physics of interest, and the TAMS
algorithm itself. The ForwardModelBaseClass defines
the API the TAMS algorithm requires from the stochastic
model.
Concrete model classes must implement all the abstract
functions defined in this base class.
The base class handles some components needed by TAMS,
so that the user does not have to ensure compatibility
with TAMS requirements.
Attributes:
_noise: the noise to be used in the next model step
_step: the current stochastic step counter
_time: the current stochastic time
_workdir: the working directory
"""
@final
def __init__(self, a_id: int, params: dict[Any, Any], workdir: Path | None = None):
"""Base class __init__ method.
The ABC init method calls the concrete class init method
while performing some common initializations. Additionally
this method create/append to a model dictionary to the
parameter dictionary to ensure the 'deterministic' parameter
is always available in the model dictionary.
Upon initializing the model, a first call to make_noise
is made to ensure the proper type is generated.
Args:
a_id: an int providing a unique id to the model instance
params: a dict containing parameters
workdir: an optional path to the working directory
"""
# Initialize common tooling
self._id = a_id
self._noise: Any = None
self._step: int = 0
self._time: float = 0.0
self._workdir: Path = Path.cwd() if workdir is None else workdir
# Add the deterministic parameter to the model dictionary
# for consistency
if params.get("model"):
params["model"]["deterministic"] = params.get("tams", {}).get("deterministic", False)
else:
params["model"] = {"deterministic": params.get("tams", {}).get("deterministic", False)}
# Call the concrete class init method
self._init_model(a_id, params)
# Generate the first noise increment
# to at least get the proper type.
self._noise = self.make_noise()
@final
[docs]
def advance(self, dt: float, need_end_state: bool) -> float:
"""Base class advance function of the model.
This is the advance function called by TAMS internals. It
handles updating the model time and step counter, as well as
reusing or generating noise only when needed.
It also handles exceptions.
Args:
dt: the time step size over which to advance
need_end_state: whether the step end state is needed
Return:
Some model will not do exactly dt (e.g. sub-stepping) return the actual dt
"""
try:
actual_dt = self._advance(self._step, self._time, dt, self._noise, need_end_state)
# Update internal counter. Note that actual_dt may differ
# from requested dt in some occasions.
self._step = self._step + 1
self._time = self._time + actual_dt
except Exception:
err_msg = "Advance function ran into an error !"
_logger.exception(err_msg)
raise
return actual_dt
@final
[docs]
def get_noise(self) -> Any:
"""Return the model's latest noise increment."""
return self._noise
@final
[docs]
def set_noise(self, a_noise: Any) -> None:
"""Set the model's next noise increment."""
self._noise = a_noise
@final
[docs]
def clear(self) -> None:
"""Destroy internal data."""
self._clear_model()
@final
[docs]
def set_workdir(self, workdir: Path) -> None:
"""Setter of the model working directory.
Args:
workdir: the new working directory
"""
self._workdir = workdir
@abstractmethod
def _init_model(self, m_id: int, params: dict[Any, Any] | None = None) -> None:
"""Concrete class specific initialization.
Args:
m_id: the model instance unique identifier
params: an optional dict containing parameters
"""
@abstractmethod
def _advance(self, step: int, time: float, dt: float, noise: Any, need_end_state: bool) -> float:
"""Concrete class advance function.
This is the model-specific advance function.
Args:
step: the current step counter
time: the starting time of the advance call
dt: the time step size over which to advance
noise: the noise to be used in the model step
need_end_state: whether the step end state is needed
Return:
Some model will not do exactly dt (e.g. sub-stepping) return the actual dt
"""
@abstractmethod
[docs]
def get_current_state(self) -> Any:
"""Return the current state of the model."""
@abstractmethod
[docs]
def set_current_state(self, state: Any) -> Any:
"""Set the current state of the model."""
@abstractmethod
[docs]
def score(self) -> float:
"""Return the model's current state score."""
@abstractmethod
[docs]
def make_noise(self) -> Any:
"""Return the model's latest noise increment."""
@final
[docs]
def post_trajectory_branching_hook(self, step: int, time: float) -> None:
"""Model post trajectory branching hook.
Args:
step: the current step counter
time: the time of the simulation
"""
self._step = step
self._time = time
self._trajectory_branching_hook()
def _trajectory_branching_hook(self) -> None:
"""Model-specific post trajectory branching hook."""
@final
[docs]
def post_trajectory_restore_hook(self, step: int, time: float) -> None:
"""Model post trajectory restore hook.
Args:
step: the current step counter
time: the time of the simulation
"""
self._step = step
self._time = time
self._trajectory_restore_hook()
def _trajectory_restore_hook(self) -> None:
"""Model-specific post trajectory restore hook."""
[docs]
def check_convergence(self, step: int, time: float, current_score: float, target_score: float) -> bool:
"""Check if the model has converged.
This default implementation checks if the current score is
greater than or equal to the target score. The user can override
this method to implement a different convergence criterion.
Args:
step: the current step counter
time: the time of the simulation
current_score: the current score
target_score: the target score
"""
_ = (step, time)
return current_score >= target_score
def _clear_model(self) -> Any:
"""Clear the concrete forward model internals."""
@classmethod
[docs]
def name(cls) -> str:
"""Return a the model name."""
return "BaseClassForwardModel"